Analysis of the Optimized Schwarz Method with a Coarse Grid Correction Olivier Dubois and Martin J. Gander and **Sébastien Loisel** and Amik St-Cyr and Daniel B. Szyld A popular method for solving large boundary value problems on parallel computers is the domain decomposition approach. Given a domain Ω , one first picks a domain decomposition $\Omega = \Omega_1 \cup \ldots \cup \Omega_p$, and then one solves boundary value problems on each subdomain in parallel. The local solutions do not glue together into a global solution, but if we iterate the process, one can usually obtain convergence. In the Schwarz method, the PDE for each subdomain Ω_j is the same as the one for Ω , and the boundary data on $\partial \Omega_j$ is Dirichlet data obtained from the local solutions on the subdomains adjacent to Ω_j . The convergence rate ρ depends chiefly on p, the number of subdomains. To obtain an algorithm which converges at a rate ρ which does not depend on the number of subdomains, it is customary to introduce a coarse-grid correction. The Optimized Schwarz Method is a Schwarz method that uses Robin data on the artificial interfaces $\partial \Omega_j$. The analysis of these methods is very challenging, and there is currently no published analysis of the Optimized Schwarz Method with a coarse grid correction. We will provide such an analysis and give the optimized Robin parameter which leads to the best possible convergence rate. ^{*}dubois@ima.umn.edu $^{^\}dagger$ gander@math.unige.ch [‡]loisel@temple.edu [§]amik@ucar.edu [¶]szyld@temple.edu